
Design and Implementation of a
Smart Contract Creator Framework

for IoT Devices

Sandro Luck
Zurich, Switzerland

Student ID: 13-927-769

Supervisor: Sina Rafati Niya, Thomas Bocek
Date of Submission: 14. August 2017

University of Zurich
Department of Informatics (IFI)
Binzmülestrasse 14, CH-8050 Zürich, Switzerland ifi

S
O

F
T

W
A

R
E

P
R

O
JE

C
T

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Software Project
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zürich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Blockchains have made tremendouse changes during the last years on financial and non
financial applications. A promising new usage of the blockchain technology have been
Smart Contracts, Turing complete programms globally evaluated on the blockchain. Ge-
nerating vast amounts of Smart Contract for Sensor based use cases has been a time
consuming and difficult task. The Smart Contract Generator Framework allows the user
to automate the creation of Smart Contracts for Internet of Things related use cases and
speed up the creation and monitoring process. The Django based graphical web appli-
cation aids the user at generating and writing these Smart Contracts. This document
describes the implementation and usage of the Smart Contract Generator Framework
https://github.com/SandroLuck/SCGenerator .

i

ii

Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisors Sina Rafati
Niya and Dr. Thomas Bocek for their support, help, expertise and time they dedicated to
me. I thank Prof. Dr. Burkhard Stiller, the head of the Communication Systems Group
at the University of Zurich, for making this project possible.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 German summary 1

1.1 Einleitung . 1

1.2 Ziele . 1

1.3 Resultate . 2

2 Introduction 3

2.1 Motivation . 3

2.2 Blockchains . 3

2.2.1 Cryptocurrencies . 4

2.2.2 Mining cryptocurrencies . 4

2.2.3 Ethereum . 5

2.2.4 Smart Contracts and Solidity . 5

2.2.5 Smart Contract Costs . 6

2.3 IoT and blockchains . 7

2.4 Code Generation . 7

2.5 Description of Work . 7

2.6 Thesis Outline . 7

3 Related Work 9

v

vi CONTENTS

4 Development 11

4.1 User interface . 11

4.1.1 Starting page . 11

4.1.2 Navigation Menu . 12

4.1.3 Header . 13

4.1.4 Footer . 13

4.1.5 Register a new device . 14

4.1.6 Adding metrics to the device . 14

4.1.7 Device Overview . 15

4.1.8 Template Creation . 15

4.1.9 Template Overview . 16

4.1.10 Downloading Smart Contracts . 16

4.1.11 Contract Monitor . 17

4.2 Database . 18

4.3 Generated Smart Contracts . 19

4.3.1 Template with Trigger evaluation 19

4.3.2 Lightweight Template . 22

4.4 Restrictions of the pragma solidity 0.4.11 version 24

4.4.1 Usage of float/double . 24

4.4.2 Estimating the gas costs . 25

4.4.3 ASCII . 25

5 Evaluation 27

5.1 Smart Contract Cost Evaluation . 27

5.1.1 Lightweight SC cost evaluation . 27

5.1.2 Threshold Smart Contract cost evaluation 28

5.2 Optimization . 29

5.2.1 Choosing the right integer . 29

CONTENTS vii

6 Summary and Conclusions 31

Bibliography 33

Abbreviations 35

List of Figures 35

List of Tables 37

A Installation Guidelines 41

A.1 Install and start the application . 41

A.2 Switching Database . 42

A.3 Create an admin user . 42

A.4 Add blockchain support . 42

B Contents of the CD 43

viii CONTENTS

Chapter 1

German summary

1.1 Einleitung

Blockchain ist ein dezentraler public ledger, diese Technologie hat sich in den letzten
Jahren sehr stark entwickelt und in verschiedensten Branchen Anwendungsfälle gefunden.
Blockchains ermöglichen es den Benutzern global Daten zu teilen, zu evaluieren und zu
überwachen. Sensoren, welche auf der ganzen Welt verteilt sind, sammeln stetig mehr
Daten und könnten, unter Benutzung der Blockchain Technologie, diese auch öffentlich
und unverfälscht zugänglich machen. In letzter Zeit wurde auch vermehrt die Kombination
von Internet of Things (IoT) Geräten und der Blockchain Technologie vorangetrieben. Der
Blockchain Technologie sowie IoT Geräten wird auch nachgesagt, dass sie eine entschei-
dende Rolle in der Industrie 4.0 spielen werden. Da das Interesse an den beiden genannten
Technologie gross ist, wäre es von Vorteil ein funktionales und vertrauenswürdiges Frame-
work zu erstellen, welches den Zugang zu diesen Technologien erleichtert. Deshalb hat
diese Arbeit zum Ziel ein Framework zur erstellen, welches das Aufsetzen sogenannter
Smart Contracts erleichtert und beschleunigt. Smart Contracts sind Programme, welche
in der Programmiersprache Solididty geschrieben werden, und in der Ethereum Blockchain
von vielen Akteuren evaluiert werden, um dessen Vertrauenswürdigkeit / Unverfälschtheit
zu garantieren. Weitere Informationen zu dieser Technologie können in der beiliegenden
Englischen Version des Softwareprojektdokumentes gefunden werden oder auch auf der
Webseite der Ethereum Stiftung (https://www.ethereum.org/).

[Referenzen] Da es sich bei disem Deutschen Text um eine Zusammenfassung handelt,
wurden die Referenzen und Begründungen weggelassen. In der Englischen Version wer-
den die Referenzen und Begründungen allerdings ausführlich aufgeführt.

1.2 Ziele

Das Ziel dieses Softwareprojektes ist es, eine voll funktionsfähig Webapplication zu de-
signen und zu implementieren. Diese Webapplikation erleichtert und automatisiert das

1

2 CHAPTER 1. GERMAN SUMMARY

erstellen von Smart Contracts für IoT und Blockcahin basierte Anwendungsfälle. Bei der
Entwicklung der Applikation soll darauf geachtet werden, dass die Applikation sowie die
produzierten Smart Contracts einfach erweitert und geändert werden können. Es sollen di-
verse neue Smart Contracts, aufgrund der vorhandenen Templates mit unterschiedlichen
Thresholds und/oder anderen neuen Standards oder Geräten erstellbar sein. Die da-
raus entstehende Applikation wird in Zukunft dafür verwendet, die Quellcode Produktion
zukünftiger Projekte zu beschleunigen und zu vereinfachen.

[Orginal Text der Aufgabenstellung] Die Aufgabenstellung wurde auf Englisch verfasst.
Der Abschnitt Ziele ist eine Übersetzung des Autors.

1.3 Resultate

Entstanden ist eine Django basierte Webapplikation, welche eine einfach zu bedienende
Grafische Oberfläche bietet. Die Datenbank dieser Applikation kann über diese Grafische
Oberfläche, mithilfe von Formularen, mit Daten gefüllt werden, welche die Erstellung von
Smart Contracts automatisiert. So erstellte Smart Contracts können dann über die We-
bapplikation heruntergeladen und mithilfe der Ethereum Blockchain ausgeführt werden.
Auch besteht die Möglichkeit die aufgeführten Smart Contracts mithilfe des Smart Con-
tract Monitors zu überwachen und deren Event Verlauf nachzuschlagen. Die Applikation
funktioniert sowohl auf Windows und Linux, als auch au OSX, wurde aber hauptsächlich
auf Linux und Windows entwickelt. Es werden die Datenbanken SQLite, MySQL und
PostrgresSQL unterstützt.

Chapter 2

Introduction

2.1 Motivation

Blockchain is a decentralized and public ledger that has made tremendous changes during
last years on financial and non financial applications. Blockchains offer their users multi-
ple advantages such as sharing their data, evaluating it and monitoring it.
Data collected by sensors, scattered all around the world with limitless types and regard-
less of functionality or use case, could be accessed by blockchain clients with distributed
public accessibility with an almost undeniable credibility [22], thus delivering publicly
accessible data for everyone including industries, researchers or motivated individuals and
improving transparency and insight in various aspects of life.
Use cases for blockchain-based systems that have been focused recently in the industry
and academia are integrating Internet of Things (IoT) and blockchain based approaches
to extend there usability. Also, both blockchain and IoT devices are said to play a major
role in Industry 4.0 [20]. Industry 4.0 describes factories widely automated by automatic
machines which are interconnected in the IoT and are able to communicate, produce and
monitor in an automated way [21].
As the interest in IoT applications and blockchain is increasing, a functional, trustable
framework to provide Smart Contracts (SC) with high efficiency and least possible costs
is needed. Most of the use cases are similar and can be rewritten with the SC Generator
framework, with less time and error susceptibility. This project aims at reducing the in-
stallation time and error susceptibility and solving some of the most common sensor and
blockchain related use cases by providing templates, which can be extended easily.

2.2 Blockchains

A blockchain is a decentralized and public ledger which allows for the decentralized storage
and evaluation of data [6]. Blockchain-based systems provide the possibility for their users
to insert their data into this distributed ledger. These so called blocks are inserted in a
chronological order and a so called block number is constantly incremented and can be

3

4 CHAPTER 2. INTRODUCTION

used to assure global order [6]. The entire user base of a blockchain is guaranteed to
have the same view of the state of the blockchain. Each member of the blockchain is
identified by one or multiple unique identities called addresses. With each address a set
of transactions is stored in the blockchain, such that one knows how much ”money” each
individual address can use.
While in the beginning blockchain where mainly a tool for transferring money, without
relaying on a centralized organization, the focus is currently shifting towards a broader
usage. Some of the newer uses of blockchains include digital identity [12], e-voting and
governance [13].

2.2.1 Cryptocurrencies

Associated with most blockchains is a so called cryptocurrency. A cryptocurrency is a
collection of digital entries in the blockchain, which can be considered to some extend as
money, but cryptocurrencies until now have not been issued nor guaranteed by states. In
this work a cryptocurrency, also called an electronic coin, is defined as a chain of dig-
ital signatures where one specific coin can only be hold by one individual address [7].
Cryptocurrencies can be transferred through the blockchain from one address to another
address. The processes of transferring said coins costs a small amount of the cryptocur-
rency.
These cryptocurrencies, in most countries, are freely tradeable but do not have a guar-
anteed value in dollars, CHF or any other real currency. But due to the value assigned
to the cryptocurrency by the market, the blockchain can be described as A Peer-to-Peer
Electronic Cash System as Satoshi Nakamoto (the creator of Bitcoin) described it in 2008
[7]. Usually the upper limit of cryptocurrencies is defined or converges to a value, but
this is not guaranteed in all cases.

2.2.2 Mining cryptocurrencies

The initial generation of these cryptocurrencies is generated through a process called
mining. While the mining algorithm varies depending on which cryptocurrency one is
mining, generally one can say that the person mining has to dedicate computer hardware
and electricity to be awarded a unit or denomination of the cryptocurrency. It is assumed
that miners only mine when the return for mining, mainly defined by the electricity cost
and mining difficulty, is profitable. The mining difficulty increases over time, how and how
much this happens depends on the specific implementation of the various cryptocurrencies.
The people or institutions which participate in this process are called miners.
Each transaction is evaluated by a group of miners, and the transaction fee associated with
each transaction is usually given to those miners in order to evaluate the transactions,
for this purpose each miner has a copy of the blockchain on his device. A miner can also
be defined as a person which provides the blockchain ecosystem with computation power
and hardware.

2.2. BLOCKCHAINS 5

2.2.3 Ethereum

A new and increasingly popular implementation of this concept is Ethereum [8]. Ethereum,
at the time writing has a market capitalization, of above $20,000,000,000 [9]. It is
worth noting that the price for Ethereum is fluctuating heavily (between January 2017
and June 2017, Ethereums market capitalization fluctuated between $800,000,000 and
$30,000,000,000) [9]. From here on all information regarding blockchains are specifically
meant for Ethereum.
Ethereum is maintained and extended constantly, through a group called the Ethereum
Foundation [8]. The cryptocurrency associated with Ethereum is called Ether, one Ether
can be subdived into multiple smaller parts as shown in table 2.1.

Table 2.1: Ether denomination [14]
1 Ether is:

wei 1018

Kwei 1015

Mwei 1012

Gwei 109

szabo 106

finney 103

ether 1

Ethereum offers all capabilities described in the previous sections, but adds some new
features. Ethereum additionally offers the users the possibility to save Turing-complete
code called Smart Contracts (SCs) into the blockchain. These SCs are simultaneously
evaluated by multiple blockchain users to ensure everyone has the same state of the
contracts. As with the transactions evaluating and executing the SC costs a small amount
of Ether for the owner of the SC.

2.2.4 Smart Contracts and Solidity

Real contracts (juristic meaning) are a key legal instrument for private operators as they
execute changes in their legal relations or try to prepare for future turns of events [1]. Such
traditional contracts are often formulated in natural languages and have to be interpreted.
A so called Smart Contract (SC) is a digital program which is evaluated in the blockchain
and should produce the same result no matter by which computer it is evaluated. It is
worth noting that SCs do not only offer the functionality of some traditional contracts
but can theoretically be used for everything traditional programs can be used [1]. SCs
are written in a programming Language called Solidity [10]. Solidity has been described
as a contract-oriented and high-level language whose syntax and usage feels similar to
JavaScript and runs on the Ethereum Virtual Machine (EVM) [10]. This virtual machine
is a consensus-based globally executed virtual machine [11]. The specific part of the
Ethereum protocol, which handles internal state and computation, is referred to as the
Ethereum Virtual Machine [11]. This EVM is what executes the SCs and guarantees that

6 CHAPTER 2. INTRODUCTION

its code is evaluated correctly. It is worth noting that all the guarantees given by the
blockchain may only hold as long as the majority of the network is operating honestly.

2.2.5 Smart Contract Costs

While executing on the EVM the SC cost an amount of Ether [15]. This amount is a
execution fee and usually called gas [15]. This gas is bought from the miners executing
the contracts on the blockchain [15]. Ether and gas are two decoupled currencies, where
gas is used to pay EVM execution costs and is usually bought via the Ethereum-Wallet
while deploying or using a contract. The price of gas is defined by the miner community,
since they define at which gasprice they execute a contract or transaction. The Total
costs of executing can be calculated by

Total cost = gasUsed * gasPrice

Where gasUsed is the cumulative gas costs of each operation in the SC. The gas costs for
each operation can be seen at the official Ethereum spreadsheet [16]. A reduce version is
shown in table 2.2.

Table 2.2: Simplified table describing gas costs per operation [16]
Operation Name Gas Cost Additional Infos
step 1 default per execution
stop 0 stop contract execution
suicide 0 delete a contract
sha3 20 hashing
sload 20 get from storage
sstore 100 put into storage
balance 20
call 20 read-only call

memory 1
for every word
expanding memory

txdata 5 every byte of data
transaction 500 base fee transaction

contract creation 53000
cost for deploying a
contract

The gasPrice is defined by the miners offering their computational power for Ether. The
current price can always be found at https://etherscan.io/chart/gasprice. Since
the gas price changes and each miner might offer a different gasPrice, when refering to
the gas price the average gasPrice is ment. A typical gasPrice is around 23000000000 wei
in July 2017.

2.3. IOT AND BLOCKCHAINS 7

2.3 IoT and blockchains

Internet of Things (IoT) devices are devices with an internet connection which are usually
monitored or controlled by a variety of other IoT devices. IoT devices are often used in
decentralized systems.
Combining the ability of blockchains and IoT devices to save or monitor data is desirable,
since in a big network of devices a decentralized consensus finding is crucial. It ensures
all devices have the same state of the collected data and outsources the computational
power necessary to implement certain IoT use cases to the blockchain. Currently setting
up bigger networks of sensors and serving all of the them with a SC is time consuming,
this is why implementing a SC Generator framework to simplify and speed up this process
is desirable.

2.4 Code Generation

Generating code in an automatic way has been done for a variety of use cases and pro-
gramming languages. There is a variety of names used to describe said processes including
automatic programming, generative programming or source code generators . There are
two fundamentally different approaches to produce source codes [25, 26]. One is using
templates, a reduced version of the code to produce, into which the application inject
variables and the other approach would be using some advanced technics related to ma-
chine learning to produce source code [25, 26]. The application follows the template based
approach, since most of the desired contracts to be produced are very similar.

2.5 Description of Work

This work describes how to produce a SC generating web-application. The source code
of this application can be found at https://github.com/SandroLuck/SCGenerator .
The application Smart Contract Generator is a web based solution for SC creation mainly
focusing on IoT devices.
It has be designed to be extendable and could feature more templates in the future. But
as of the time writing it features two templates both written for the Ethereum-based
programming language Solidity and optimized for pragma solidity 0.4.11. Since in the
area of IoT devices often a big amount of devices have to be served with a relatively
similar SC, a template based source code creation approach has been chosen to serve the
IoT use cases which will be discussed in chapter 4.3.

2.6 Thesis Outline

In Chapter 1 a German summary of this project is given. In Chapter 2, the basic concepts
used in this work such as blockchains, Ethereum, SCs, Code generation and IoT devices

8 CHAPTER 2. INTRODUCTION

are explained and set into context as well as our approach on how to automated some
of the time consuming aspects of their usage. In Chapter 3 related works are discussed.
In Chapter 4 various aspects of the implementation of this application are discussed such
as, the user interface, the database, the generated SCs and certain restriction that have
influenced this application. In Chapter 5 various tests for all templates are featured as
well as possible ways to optimize these even further. In Chapter 6 the Summary and
Conclusions of this work are given. In Chapter 6 all bibliographic references are listed. In
chapter 6 the abbreviations are listed. In the appendix the installation instructions and
contents of the CD are listed.

Chapter 3

Related Work

While there are projects and publications discussing Blockchains and its usage for IoT
devices [2]. They mainly focus on saving data into the blockchain, often to increase the
security such systems offer. The usage of Smart Contracts for IoT use cases has been
evaluated by K. Christidis [3] and has been described as a potential game changer for
several industries and use cases.
Also, there have been several approaches for different languages and use cases to automate
the production of certain code snippets or entire code bases [4].
But to our best knowledge there has until now been no approach to generate Smart
Contracts for IoT devices in an automated manner. This might be due to the relatively
new technologies involved or the current restrictions of these systems.

9

10 CHAPTER 3. RELATED WORK

Chapter 4

Development

4.1 User interface

One of the first questions that arise when designing a tool to increase development speed
for IoT related Smart Contracts (SC), is how should the values be specified by the user.
Since most environments, using blockchains and IoT devices, should be connected to a
intranet or the internet a web-based application seems to offer all necessary interactions
for the user.
Therefore a Django based web application [23] has been designed to offer users the ca-
pability to easily integrate this application into their existing infrastructure. The entire
application was designed to scale up to a size useful for small and intermediate compa-
nies. All web-based links and templates have been designed to be accessible by anyone
able to access the described web-based solution. This design choice has been made due
to the often very limited capabilities of IoT sensors such that after a template has been
created, the produced SC can be easily download and deployed, even from devices without
a graphical user interface.
While it is possible to access the page via handheld devices (e.g. mobile phones and
tablets), it has been optimized for computer monitors. This decision has been made,
since deploying SCs from handheld devices is currently not recommendable due to the
lack of available software. All of the following screenshots have been made at a resolution
of 1920 x 1080 and using the Google Chrome web browser, the appearance of the web-
application might differ slightly depending on the resolution of the browser view and the
browser you are using.

4.1.1 Starting page

The starting page, as shown in figure 4.1, is the first view a new user will come in contact
with. Due to the application being optimized for sensors, the first option is to ”Register
a new device”. Alternatively, the user can choose a device already registered (written in
light blue).
For each device all values captured by the device are shown.

11

12 CHAPTER 4. DEVELOPMENT

To easily search for existing devices a searching option is available, which will look for
devices which contain the search string in either the devices name or the manufacturing
company.
In the top left corner the navigation menu can be opened to simplify the navigation pro-
cess.

Figure 4.1: SC Code-generator web application - starting page.

4.1.2 Navigation Menu

After clicking the navigation button, always located in the top left of the web application,
a navigation menu is presented to the user. Via the navigation menu the user can easily
find the most useful aspects of this application, as illustrated in figure 4.2. The navigation
item currently selected by the user is highlighted in blue.

Figure 4.2: SC Code-generator web application - navigation menu.

4.1. USER INTERFACE 13

In the current version of the application views for devices, templates, the about page
and a Smart Contract Monitor can be found. These will be discussed and shown in the
following sections.

4.1.3 Header

As shown in figure 4.3 the header is present on every page and shows the navigation menu
(circled red) and the logo and buttons for various interactions.

Figure 4.3: SC Code-generator web application - page header.

4.1.4 Footer

Each page features the page footer, as shown in figure 4.4, which informs the user about
the features of this application, as well as links to various owner specific links.

Figure 4.4: SC Code-generator web application - page footer.

14 CHAPTER 4. DEVELOPMENT

4.1.5 Register a new device

Registering a new device is the starting point for creating a new Smart Contract. This is
illustrated in figure 4.5.
To uniquely identify a device the user has to enter the device name and the manufacturing
company, since certain device names are used by multiple companies. Once a device is
registered the user can add metrics it captures and reuse it for multiple templates.

Figure 4.5: SC Code-generator web application - ”register device” form.

4.1.6 Adding metrics to the device

A Sensor captures multiple metrics, which have to be added to the sensor or sensor net-
work. All metrics can simply be checked and after accepting are added to the device, as
illustrated in figure 4.6.

Figure 4.6: SC Code-generator web application - ”add metrics to the device” form.

If the metric to be used is not yet in the data base the user can simply define a new metric
such that all use cases can be included. This process is shown in figure 4.7

4.1. USER INTERFACE 15

Figure 4.7: SC Code-generator web application - ”register a new metric” form.

4.1.7 Device Overview

To display all information available for the device there is a device overview page. This
page also offers the possibility to create new templates or add more metrics to the devices.
This view is shown in figure 4.8.

Figure 4.8: SC Code-generator web application - device Overview.

4.1.8 Template Creation

A template is always related to one specific device and features all metrics the device
captures. To create a template the user needs the name, which will later be used for the
Smart Contract name, and the trigger values to be evaluated by the Smart Contract as
shown in figure 4.9. For each device there can be multiple templates which are stored un-
der a similar URL, such that upgrading existing contracts or replacing them is simplified.

16 CHAPTER 4. DEVELOPMENT

Figure 4.9: SC Code-generator web application - template creation process.

4.1.9 Template Overview

To display all information available for the template there is a template overview page
shown in figure 4.10. This page shows all trigger values associated with the template, as
well as the contract deploying costs which are further explained in 4.4.

Figure 4.10: SC Code-generator web application - template overview.

4.1.10 Downloading Smart Contracts

After defining all necessary information to create a Smart Contract, the available Smart
Contracts can be downloaded from the template overview shown in figure 4.11. The cur-
rently available Smart Contracts are described in the section 4.3. After downloading the
Smart Contract, the user can deploy them through the Ethereum-Wallet [17] or similar
tools like the geth-tool [18].

4.1. USER INTERFACE 17

Figure 4.11: SC Code-generator web application - download section.

4.1.11 Contract Monitor

After deploying the SC the user can register his contract, using the contract address and
the contract ABI (Application Binary Interface), both can be found in the Ethereum-
Wallet. After registering a Smart Contract it will be added to the Contract Monitor
as shown in figure 4.12. The Contract Monitor feature for each SC includes the name
(defined by the user and only used for displaying purposes), its address, the last Event
(e.g. current temperature) and a link to Etherscan.org which has some more advanced
Monitoring qualities. It is worth noteing that the application listens to the Ethereum
blockchain that has an open rpc interface on the default geth port (8545), such that it
can be used for testnets as well as the mainnet or private blockchains.

Figure 4.12: SC Code-generator web application - contract monitor.

Also, there is a detailed view for all Events fired by the Smart Contract. This view
is mainly useful for debugging purposes and shows all information associated with the
Events. The presentation form of this data has been kept simple to support all Smart
Contracts, also those possibly customized by the user.

18 CHAPTER 4. DEVELOPMENT

4.2 Database

Since the main use case of this framework is to provide SC code templates for different
IoT use cases, the application focused on only saving properties to the database which
are relevant to every IoT device.

Figure 4.13: ERM of the database for this application.

As Shown in figure 4.2 the application saves different properties relating to devices. The
application assumes that every device can be uniquely identified by its official name and
its manufacturing company. Further the application assumes that each device (mostly
thought of as a sensor) captures n ∈ N metrics.
One problem of defining the data base was to find a data model to describes all metrics a
device might capture. While there seems to be no ideal solution, describing each metric
with it’s physical property (e.g. Temperature or Aluminium) and it’s unit of measurement

4.3. GENERATED SMART CONTRACTS 19

(e.g. Celsius or mg/L) seems to offer potential querying possibilities in the future. The
user could look for all temperature related data or only for the data in Fahrenheit.
For each of the defined devices the user can create multiple templates which all have one
threshold for each of the metrics associated with the device. Each Threshold is for a
specific metric and features two numbers, lower trigger and upper Trigger. While upper
trigger fires when the number measured by the device is above the trigger the lower trigger
fires when the number measured by the device is below said value.
All properties discussed are strings except for lower trigger and upper trigger which are
integers, the reasoning behind this will be discussed in section 4.4. It is worth noting that
device, metric, template, and thresholds each are identified by an unique id which makes
the accessing logic consistent. For example all templates existing for a device X can be
found under a URL logic associated with the id of a device, which simplifies upgrading
and changing contracts for a specific device.

4.3 Generated Smart Contracts

The main purpose of our application is to generated SCs for IoT use cases. Since SCs cost
money to execute on the blockchain, finding an appropriate highly optimized SC for the
specific use case is desirable. Therefore the application focuses on devices which measure
n ∈ N metrics and have some trigger values associated with it. This work defines metrics
as every physically measurable unit a senor might capture.

4.3.1 Template with Trigger evaluation

A simple use case might be a sensor which measures the relative Humidity and the Tem-
perature in Celsius and should trigger an alarm if the current values measured by the
device are outside of the range specified by the user. Note that the unit of measurement
(e.g. permille or percent) are to be specified by the user see section 4.4 for the reasoning
behind this.

Table 4.1: Room Temperature according to National Asthma Council Australia [5]
Lower Trigger Upper Trigger

Temperature, Celsius in percent 1800 2500
Relative humidity in permille 350 550

An example Contract generated for this use case might look like the code shown in figure
4.1.

pragma s o l i d i t y ˆ 0 . 4 . 1 1 ;
cont rac t owned {

//This i s an o f f i c i a l s o l i d i t y sn ippet from
// http :// s o l i d i t y . readthedocs . i o /en/ develop / con t r a c t s . html

func t i on owned () { owner = msg . sender ; }
address owner ;
// This cont rac t only d e f i n e s a mod i f i e r but does not use
// i t − i t w i l l be used in der ived con t r a c t s .

20 CHAPTER 4. DEVELOPMENT

// The func t i on body i s i n s e r t e d where the s p e c i a l symbol
// This means that i f the owner c a l l s t h i s funct ion , the
// func t i on i s executed and otherwise , an except ion i s
// thrown .
mod i f i e r onlyOwner {

r e qu i r e (msg . sender == owner) ;
;

}
}
cont rac t roomtemperatureisok i s owned {

i n t16 constant TemperatureCelsiusPerCentLT = 1800 ;

in t16 constant TemperatureCelsiusPerCentUT = 2500 ;

in t16 constant Relat iveHumidityInPerMil leLT = 350 ;

in t16 constant RelativeHumidityInPerMil leUT = 550 ;

event AlarmTemperatureCelsiusPerCent (
in t16 valTemperatureCels iusPerCent ,
s t r i n g i d
) ;

event AlarmRelat iveHumidityInPerMil le (
in t16 va lRe lat iveHumid i tyInPerMi l l e ,
s t r i n g i d
) ;

event AlarmAll (
in t16 valTemperatureCels iusPerCent ,
in t16 va lRe lat iveHumid i tyInPerMi l l e ,
s t r i n g i d
) ;

f unc t i on ge tTr i gg e r s () onlyOwner
r e tu rn s (
in t16 TemperatureCelsiusPerCentLT ,
in t16 TemperatureCelsiusPerCentUT ,
in t16 RelativeHumidityInPerMil leLT ,
in t16 RelativeHumidityInPerMil leUT
){

r e turn (
TemperatureCelsiusPerCentLT ,
TemperatureCelsiusPerCentUT ,
RelativeHumidityInPerMil leLT ,
RelativeHumidityInPerMil leUT
) ;

}

f unc t i on updateTemperatureCels iusPerCent (
in t16 valTemperatureCels iusPerCent ,
s t r i n g i d
) onlyOwner {

i f (TemperatureCelsiusPerCentLT > valTemperatureCels iusPerCent | |
TemperatureCelsiusPerCentUT < valTemperatureCels iusPerCent
) {

AlarmTemperatureCelsiusPerCent (valTemperatureCels iusPerCent , i d) ;
}

}

f unc t i on updateRelat iveHumidityInPerMi l le (
in t16 va lRe lat iveHumid i tyInPerMi l l e ,
s t r i n g i d
) onlyOwner {

i f (Relat iveHumidityInPerMil leLT > va lRe la t iveHumid i ty InPerMi l l e | |
RelativeHumidityInPerMil leUT < va lRe la t iveHumid i ty InPerMi l l e
) {

AlarmRelat iveHumidityInPerMil le (va lRe lat iveHumid i tyInPerMi l l e , i d) ;
}

}

4.3. GENERATED SMART CONTRACTS 21

f unc t i on updateAl l (
in t16 valTemperatureCels iusPerCent ,
in t16 va lRe lat iveHumid i tyInPerMi l l e ,
s t r i n g i d
) onlyOwner
{

i f ((TemperatureCelsiusPerCentLT > valTemperatureCels iusPerCent | |
TemperatureCelsiusPerCentUT < valTemperatureCels iusPerCent)
&&
(Relat iveHumidityInPerMil leLT > va lRe la t iveHumid i ty InPerMi l l e | |
RelativeHumidityInPerMil leUT < va lRe la t iveHumid i ty InPerMi l l e)
) {

AlarmAll (
valTemperatureCels iusPerCent ,
va lRe lat iveHumid i tyInPerMi l l e ,
i d) ;

}
e l s e {

i f (TemperatureCelsiusPerCentLT > valTemperatureCels iusPerCent | |
TemperatureCelsiusPerCentUT < valTemperatureCels iusPerCent
) {

AlarmTemperatureCelsiusPerCent (
valTemperatureCels iusPerCent ,
i d) ;

}
i f (Relat iveHumidityInPerMil leLT > va lRe la t iveHumid i ty InPerMi l l e | |
RelativeHumidityInPerMil leUT < va lRe la t iveHumid i ty InPerMi l l e
) {

AlarmRelat iveHumidityInPerMil le (
va lRe lat iveHumid i tyInPerMi l l e ,
i d) ;

}
}

}
}

Listing 4.1: Example of an Autogenerated SC for a sensor capturing two metrics

The SC shown above can be deployed for around 550000 gas a more detailed insight is
given in section 5.
The contract owned as shown in 4.1 ensures that all functions annotated with the modifier
onlyOwner are only callable by the contract deploying address. This is a security measure
such that only sensors controlled by the owner are able to trigger Events.
If the allowed addresses are known prior to the deploying process, the contract can be
modified easily to allow a specific set of addresses, as shown in 4.2. Using this mechanism
a collection of similar sensors could communicated through the same contract, which
potentially eases monitoring.
pragma s o l i d i t y ˆ 0 . 4 . 1 1 ;
cont rac t owned {

//This i s an o f f i c i a l s o l i d i t y sn ippet from
// http :// s o l i d i t y . readthedocs . i o /en/ develop / con t r a c t s . html

func t i on owned () { owner = msg . sender ; }
address owner ;
address secondDevice = 0xdeadbeefEB80aFb9972f510dA72c39de0B505752 ;
address th i rdDev ice = 0xbeefdeadEB80aFb9972f510dA72c39de0B505752 ;
mod i f i e r onlyOwner {

r e qu i r e (
msg . sender == owner | |
msg . sender == secondDevice | |
msg . sender == th i rdDev ice
) ;

;
}

}

Listing 4.2: Example of a extended owned contract

22 CHAPTER 4. DEVELOPMENT

The user defines the variables shown in table 4.2.

Table 4.2: Values generated and specified by the user
Values given by the user Generates values in SC 4.1
Template name:
roomtemperatureisok

contract roomtemperatureisok is owned

Physical Property: Temperature
Unit of Measurement: Celsius

int16 TemperatureCelsiusPercentLT
int16 TemperatureCelsiusPercentUT
event: AlarmTemperatureCelsiusPercent
function: updateTemperatureCelsiusPercent

Physical Property: Relative Humidity
Unit of Measurement: PerMille

int16 RelativeHumidityInPermilleLT
int16 RelativeHumidityInPermilleUT
event: AlarmRelativeHumidityInPerMille
function: updateRelativeHumidityInPerMille

Lower trigger Temperature:
1800

int16 TemperatureCelsiusPerCentLT = 1800

Upper trigger Temperature:
2500

int16 TemperatureCelsiusPerCentUT = 2500;

Lower trigger Humidity:
350

int16 RelativeHumidityInPermilleLT = 350;

Lower trigger Humidity:
550

int16 RelativeHumidityInPermilleUT = 550;

The functions updateAll(), getTriggers() and the event AlarmAll() are generated and
influenced by all metrics set by the user.
All functions starting with the name update, in this template, generate an Event including
the sensor identifier and the current value, if the value violates the inequality constraint
lowerTrigger < currentValue < upperTrigger. The function updateAll() triggers an Event
AlarmAll, containing all current values and the device identifier, if all constraints are
violated simultaneously. If only a subset of all metrics are violated only the respective
Events are triggered.
For example in our ”Room temperature is ok” setting, if the Temperature in Celsius rises
above 60 degrees the user could assume there was a fire in the room, but if the Humidity
barely changes, it is likely that it is only a sensor malfunction.

4.3.2 Lightweight Template

Since the amount of different use cases and possibilities in the SC area are potentially
endless and the SC Generator Framework might be expended in the future. Additionally
to the template described in section 4.3.1, the application offers a lightweight contract,
which can easily be updated and modified.

pragma s o l i d i t y ˆ 0 . 4 . 1 1 ;

cont rac t owned {
//This i s an o f f i c i a l s o l i d i t y sn ippet from

4.3. GENERATED SMART CONTRACTS 23

// http :// s o l i d i t y . readthedocs . i o /en/ develop / con t r a c t s . html
func t i on owned () {owner = msg . sender ;}

address owner ;
// This cont rac t only d e f i n e s a mod i f i e r but does not use
// i t − i t w i l l be used in der ived con t r a c t s .
// The func t i on body i s i n s e r t e d where the s p e c i a l symbol
// This means that i f the owner c a l l s t h i s funct ion , the
// func t i on i s executed and otherwise , an except ion i s
// thrown .
mod i f i e r onlyOwner {

r e qu i r e (msg . sender == owner) ;
;

}
}

cont rac t roomtemperatureisok i s owned {
event TemperatureCels iusPerCent (
in t16 valTemperatureCels iusPerCent ,
s t r i n g i d) ;

event Relat iveHumidi tyInPerMi l l e (
in t16 va lRe lat iveHumid i tyInPerMi l l e ,
s t r i n g i d) ;

event AlarmAll (
in t16 valTemperatureCels iusPerCent ,
in t16 va lRe lat iveHumid i tyInPerMi l l e ,
s t r i n g i d
) ;

f unc t i on alarmTemperatureCelsiusPerCent (
in t16 valTemperatureCels iusPerCent ,
s t r i n g i d
) onlyOwner {

TemperatureCels iusPerCent (valTemperatureCels iusPerCent , i d) ;
}

f unc t i on alarmRelat iveHumidityInPerMi l le (
in t16 va lRe lat iveHumid i tyInPerMi l l e ,
s t r i n g i d) onlyOwner {

Relat iveHumidi tyInPerMi l l e (va lRe lat iveHumid i tyInPerMi l l e , i d) ;
}

f unc t i on alarmAll (
in t16 valTemperatureCels iusPerCent ,
in t16 va lRe lat iveHumid i tyInPerMi l l e ,
s t r i n g i d
) onlyOwner
{

AlarmAll (valTemperatureCels iusPerCent , va lRe lat iveHumid i tyInPerMi l l e , i d) ;
}

}

Listing 4.3: Example of a lightweight template

The SC shown in 4.3 is the lightweight version of a SC for Sensors. In this form it basically
stores the values sent to it by the user, in the form of an Event in the blockchain. Due
to its limited capabilities it is quite cheap and can be deployed from 370000 gas, this is
approximately 30% cheaper than the SC shown in 4.1. The values specified by the user
are shown in table 4.3. Such a contract can be used if multiple sensors are reporting
their metrics every x hours, and the recorded values are then publicly available in the
blockchain, for blockchain applications to process or humans to monitor the state of
the sensor network. Of course it can also be useful for debugging purposes since it is
lightweight and reports all values sent to it, such that when developing a new SC this SC

24 CHAPTER 4. DEVELOPMENT

Table 4.3: Values specified by the user for the lightweight contract
Values given by user Generates values in 4.3
Template name:
roomtemperatureisok

contract roomtemperatureisok is owned

Physical Property: Temperature
Unit of Measurement: Celsius

event: AlarmTemperatureCelsiusPercent
function: updateTemperatureCelsiusPercent

Physical Property: Relative Humidity
Unit of Measurement: PerMille

event: AlarmRelativeHumidityInPerMille
function: updateRelativeHumidityInPerMille

can be used simultaneously .
To stay with the example already used previously, if the user has a building with 100
rooms, and every sensor saves the values accumulated throughout the day (let’s say a
daily average) and pushes them to the SC. A blockchain application, which listens to the
Events generated by the SC could do the costly operations, such as evaluating trigger
violations, calculating averages or finding suboptimal room conditions. This would also
further decrease the costs of the SC evaluation.
Also, this lightweight contract can be easily extended to meet the specific requirements
useful for the sensors environment required by the user. Additionally modification which
lower the cost of ownership can be found in the section 5.2.

4.4 Restrictions of the pragma solidity 0.4.11 version

Since Solidity has only been around for 2 years certain restrictions, which can be expected
to change in the future, exist. As of july 2017 the following restriction mainly influenced
the development of this framework.

4.4.1 Usage of float/double

While using floats and double would be very useful for capturing metrics in their correct
representations, as of july 2017 this is not possible. The Solidity documentation mentions
that this feature should be coming soon, but do not mention an explicit date this should
be completed. It would be possible to work with bytes instead, but since this would make
the application harder to use it has not been used.
The best practice approach to work with this restriction is to multiply every value with
a suitable number, such that the information is preserved but fits into the range of an
integer. Since there is no ideal solution it has been decided that the user should handle the
input format, such that all values are converted to an integer which is accurately enough
for the users use case. To illustrate this some examples are shown in table 4.4.

4.4. RESTRICTIONS OF THE PRAGMA SOLIDITY 0.4.11 VERSION 25

Table 4.4: Convert values to the integer range
Real value: Multiplier integer representation:
-18.67 degrees in Celsius 100 -1867
0.005 Endrin µg/l 1000 5
1.0009% 10000 10009

4.4.2 Estimating the gas costs

To indicate to the users of our SCs how much their individual contracts will cost, is a
desirable feature. Therefor the application estimates the gas costs of the contract via
the function web3.estimateGas [10]. This functionality and its limitations are further
discussed in section 4.4.
As of july 2017 the most reliable way of determining the costs of a SC is deploying it on
one of the various Etherum-testnets and see the actual gas usage. This procedure is also
used to determine the costs for a function calls.

4.4.3 ASCII

ASCII(American Standard Code for Information Interchange) is an encoding with 128
(this might vary slightly) different Symbols [19]. Due to Solidity only being able to
work with ASCII symbols the entire application is limited to be ASCII only. This means
Symbols such as ü, ä, ö etc., which might be quite common in German or other languages,
can not be used.

26 CHAPTER 4. DEVELOPMENT

Chapter 5

Evaluation

5.1 Smart Contract Cost Evaluation

This section testes the SCs shown in section 4.3 for their cost usage. Both, the SCs
without trigger evaluation and the ones with trigger evaluation have been tested. For
testing the ropsten testnet [24] has been used. Since all functions allow a parameter id
of type String, this parameter can be left empty to reduce costs to a minimum, the test
String ”Hello World” has been used, since it is quite common in the IT community.
The Price for 1’000’000 Gas was between 0.007 - 0.008 Ether while testing. It is worth
noting that the costs for a function call in Gas can change slightly depending on the
Solidity version, version pragma 0.4.11 has been used for all tests. The time of execution
can also influence the Gas costs slightly.
Empirically it has been found that the function call costs increase the bigger the byte
code of the SC is. This means more code in the SC increases its execution costs, therefore
deleting all unnecessary functions of the SC is desirable.

5.1.1 Lightweight SC cost evaluation

The following numbers and explanation refer to the SC template shown in section 4.3.2.
The costs for this template increase for each additional metric captured. The function call
costs for this template are relatively stable and do not vary depending on additional logic,
except for the usage of the id string used which varies depending on the users needs. The
result of our tests are illustrated in table 5.1.

Table 5.1: Lightweight template costs
Nr. of Metrics Deploy costs in Gas Single Alarm costs in Gas Alarm all costs in Gas
1 274 622 27 394 27 416
2 369 049 27 394 29 915
3 462 597 27 416 32 446
4 555 685 27 416 34 930
5 630 001 27 525 37 463

27

28 CHAPTER 5. EVALUATION

It has been found that deployment costs can be approximated using

89740 ∗ x+ 189173 (5.1)

where x is the amount of metrics used. The cost for a single metric update is almost
constant, but increases slightly depending on the contracts size. The costs for updating
all values simultaneously can be approximated using

2510 ∗ x+ 24901 (5.2)

where x is the amount of metrics used.

5.1.2 Threshold Smart Contract cost evaluation

The following numbers and explanation refer to the SC template shown in section 4.3.1.
The costs for this template increase for each additional metric captured. The functions
cost of this template vary depending on whether an Event is fired or not, as well as if
the trigger violation is an upper or lower trigger violation (upper trigger violations are
cheaper, due to design choices made).
All tests have been made using a lower trigger of 0 and an upper trigger of 100, the value
to violate the triggers has been chosen to be -1 and the value to not violate the trigger has
been chosen to be 0 (the choice of the integer send to the function should not influence
the costs). The function getTriggers() is constant and therefore free to call. The result of
our tests are illustrated in table 5.2.

Table 5.2: Threshold template costs

Nr. of
Metrics

Deploy costs
in Gas

Single Alarm
without Event
costs in Gas

Single Alarm
with Event
costs in Gas

Alarm all
with Event
costs in Gas

1 378 575 23 272 27 470 27 503
2 549 987 23 272 27 470 29 998
3 722 064 23 294 27 492 32 652
4 874 578 23 403 27 601 35 282
5 1 050 324 23 447 27 645 37 743

It has been found the deployment costs can be approximated using

166809 ∗ x+ 214679 (5.3)

where x is the amount of metrics used. The cost for a single metric update with and with-
out Event is almost constant, but increases slightly depending on the contracts size. The
costs for updating all values simultaneously and violating all constraints simultaneously
can be approximated using

2576 ∗ x+ 24906 (5.4)

where x is the amount of metrics used.

5.2. OPTIMIZATION 29

5.2 Optimization

Due to the overwhelming amount of different use cases no perfectly optimized generic
contract can be generated. But optimizing the generated SCs further can significantly
improve the cost efficiency of a SC.

5.2.1 Choosing the right integer

By default the generated integers are of type int16, which can be optimized or extended.
Using smaller integers can reduce the SC execution costs, therefore choosing the smallest
possible integer range is desirable.
If the application only uses positive numbers one could use unsigned integers to improve
costs and range of the SC. Generally speaking, using unsigned integers

0 to 2k − 1 (5.5)

different values can be represented, where k is the amount of bits used. In Solidity
unsigned integers in the range of uint8 to uint256 are allowed, also allowing all uints in
between in steps of 8. This leads to the values shown in table 5.3 for unsigned integers.
For signed integers as well the range int8 to int256 (again in steps of 8) is allowed. The

Table 5.3: Example values for unsigned integers
Unsigned integer Range
uint8 0 to 255
uint16 0 to 65535
uint24 0 to 16777215
uint128 0 to 2128-1
uint256 0 to 2256-1

range this signed integers are able to represent can be calculated using

−2k−1 to 2k−1 − 1 (5.6)

where k is the amount of bits used. This leads to the example values shown in table 5.4
for signed integers.

Table 5.4: Example values for signed integers
Signed integer Range
int8 -128 to 127
int16 -32768 to 32767
int24 -16777216 to 16777215
int128 2127 to 2127-1
int256 2255 to 2255-1

30 CHAPTER 5. EVALUATION

Chapter 6

Summary and Conclusions

The implementation and design of the Smart Contract Generator Framework has been an
educational and challenging task.
The projects most demanding aspect was the usage of the relatively new Solidity program-
ming language and the combination of various different aspects of Computer Science, such
as databases, web design and code generation.
Creating and designing a system from scratch showed the author the importance of use
cases and various early design choices. Since there was no code base to build upon the
author had the possibility to design and implement important aspects of the application
himself.
All aspects of the Ethereum blockchain technology that had to be understood to imple-
ment this solution showed the author many possibilities and limitations associated with
this new technology. While the fundamental usage and concepts of the blockchain was
known prior, the author had no practical experience in developing such a system.
While the languages python, javascript, html and css where used by the author before
he surely gained a lot of new experience and knowledge, most notably with the Django
framework.
During the 3 months of this project, developing and experimenting with these differ-
ent technologies was always interesting and educational. The author thoroughly enjoyed
developing and writing this Softwareproject and had a lot of fun doing so.

31

32 CHAPTER 6. SUMMARY AND CONCLUSIONS

Bibliography

[1] Kristian Lauslahti, Juri Mattila, Timo Seppälä. Smart Contracts How will
Blockchain Technology Affect Contractual Practices?, https://www.etla.fi/

wp-content/uploads/ETLA-Raportit-Reports-68.pdf, Last visited 09.01.2017.

[2] Postcapes, Blockchains and the Internet of Things, https://www.postscapes.com/
blockchains-and-the-internet-of-things/, Last visited 29.06.2017

[3] K. Christidis and M. Devetsikiotis, Blockchains and Smart Contracts for the In-
ternet of Things, http://ieeexplore.ieee.org/document/7467408/, Last visited
29.06.2017

[4] Comparison of code generation tools, https://en.wikipedia.org/wiki/

Comparison_of_code_generation_tools, Last visited 29.06.2017

[5] Indoor Humidity Levels, National Asthma Council Australia, https://www.

nationalasthma.org.au/news/2016/indoor-humidity, Last visited 30.06.2017

[6] M. Swan, Blockchain: Blueprint for a New Economy, http://w2.blockchain-tec.
net/blockchain/blockchain-by-melanie-swan.pdf, Last visited 10.07.2017

[7] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, https://bitcoin.
org/bitcoin.pdf, Last visited 10.07.2017

[8] Ethereum Foundation, ”Official Website”, https://www.ethereum.org/ , Last vis-
ited 10.07.2017

[9] CoinMarketCap, CryptoCurrency Market Capitalizations Ethereum, https://

coinmarketcap.com/currencies/ethereum/, Last visited 10.07.2017

[10] Ethereum Foundation, Solidity, https://solidity.readthedocs.io/en/develop/,
Last visited 10.07.2017

[11] Ethereum Foundation, Ethereum Development Tutorial, https://github.com/

ethereum/wiki/wiki/Ethereum-Development-Tutorial, Last visited 10.07.2017

[12] Stewart Bond (IBM), It Was Only a Matter of Time Digital Identity on
Blockchain, https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=

GIL12346USEN&, 24.03.2017

33

34 BIBLIOGRAPHY

[13] City Zug (CH), Blockchain-Identität für alle Einwohner http://www.stadtzug.ch/
de/ueberzug/ueberzugrubrik/aktuelles/aktuellesinformationen/?action=

showinfo&info_id=383355, Last visited 03.08.2017

[14] jrbedard, What is wei? http://forum.ethereum.org/discussion/304/

what-is-wei, 01.10.2014

[15] Ethereum Community, Account Types, Gas, and Transactions
http://ethdocs.org/en/latest/contracts-and-transactions/

account-types-gas-and-transactions.html#what-is-gas, Last visited
17.07.2017

[16] Ethereum Foundation, 1.0 gas costs, https://docs.google.com/spreadsheets/

d/1m89CVujrQe5LAFJ8-YAUCcNK950dUzMQPMJBxRtGCqs/edit#gid=0, Last visited
17.07.2017

[17] Ethereum Foundation, Ethereum-Wallet, https://www.ethereum.org/, Last visited
25.07.2017

[18] Ethereum Foundation, geth, https://geth.ethereum.org/, Last visited 25.07.2017

[19] ASCIItable.com, ASCII table, http://www.asciitable.com/, Last visited
27.07.2017

[20] Shivkumar Kalyanaraman, Industry 4.0 meets Cognitive IoT, https://www.

ibm.com/blogs/internet-of-things/industry-4-0-meets-cognitive-iot/,
28.10.2016

[21] F. Shrouf, J. Ordieres, G. Miragliotta,Smart factories in Industry 4.0: A review of the
concept and of energy management approached in production based on the Internet of
Things paradigm, http://ieeexplore.ieee.org/document/7058728/#, 12.03.2015

[22] DataFloq, Privacy, https://datafloq.com/read/

securing-internet-of-things-iot-with-blockchain/2228, Last visited April
20, 2017

[23] Django Software Foundation, Django The web framework for perfectionists with
deadlines , https://www.djangoproject.com/, Last visited 27.07.2017

[24] Ethereum Foundation, Ropsten testnet PoW chain, https://github.com/

ethereum/ropsten, Last visited 29.07.2017

[25] John R. Koza, a source of information about the field of genetic programming and the
field of genetic and evolutionary computation, http://www.genetic-programming.
org/, Last visited 05.08.2017

[26] CodeSmith Tools, CodeSmith Tools, http://www.codesmithtools.com/, Last vis-
ited 05.08.2017

Abbreviations

ASCII American Standard Code for Information Interchange
ERM Entityrelationship model
EVM Ethereum Virtual Machine
IoT Internet of Things
SC Smart Contract
UI User interface

35

36 ABBREVIATONS

List of Figures

4.1 SC Code-generator web application - starting page. 12

4.2 SC Code-generator web application - navigation menu. 12

4.3 SC Code-generator web application - page header. 13

4.4 SC Code-generator web application - page footer. 13

4.5 SC Code-generator web application - ”register device” form. 14

4.6 SC Code-generator web application - ”add metrics to the device” form. . . 14

4.7 SC Code-generator web application - ”register a new metric” form. 15

4.8 SC Code-generator web application - device Overview. 15

4.9 SC Code-generator web application - template creation process. 16

4.10 SC Code-generator web application - template overview. 16

4.11 SC Code-generator web application - download section. 17

4.12 SC Code-generator web application - contract monitor. 17

4.13 ERM of the database for this application. 18

37

38 LIST OF FIGURES

List of Tables

2.1 Ether denomination [14] . 5

2.2 Simplified table describing gas costs per operation [16] 6

4.1 Room Temperature according to National Asthma Council Australia [5] . . 19

4.2 Values generated and specified by the user 22

4.3 Values specified by the user for the lightweight contract 24

4.4 Convert values to the integer range . 25

5.1 Lightweight template costs . 27

5.2 Threshold template costs . 28

5.3 Example values for unsigned integers . 29

5.4 Example values for signed integers . 29

39

40 LIST OF TABLES

Appendix A

Installation Guidelines

Additional documentation might be found at https://www.djangoproject.com/ and
https://github.com/SandroLuck/SCGenerator. Note that all the instructions starting
with a bulletpoint are ment to be executed in the terminal.

A.1 Install and start the application

Install Python (Versions >=3 should work, yet we have developed this application using
3.5.2) and pip.
Install via pip django, psycopg2 and naked

• pip install django naked psycopg2

cd to /”Path to this app”/mysite/ and locate the manage.py file (you have to be in the
folder where manage.py is).

• cd /”Path to this app”/mysite/

run the django migrations in cases something went wrong, it should return nothing to
change.

• python manage.py makemigrations

• python manage.py migrate

To run the application

• python manage.py runserver

Open your browser and go to localhost:8000/smartGenerator/

41

42 APPENDIX A. INSTALLATION GUIDELINES

A.2 Switching Database

Since setting up the application is easiest with SQLite it is the default database. However
if you wish to use a different database choose one from https://docs.djangoproject.

com/en/1.11/ref/databases/ and follow the django documentation.

A.3 Create an admin user

To create a Django admin user.

• python manage.py createsuperuser

You can now go to localhost:8000/admin/ and modify the database directly.

A.4 Add blockchain support

To get the full blockchain support (Mainly the Smart Contract Monitor):
Install nodejs https://nodejs.org/en/download/ and npm (or any package manager)

• npm install web3 solc fs

Install geth https://github.com/ethereum/go-ethereum/wiki/geth and run the geth
command.

• geth –rpc –testnet –rpcapi=”db,eth,net,web3,personal” –rpcport ”8545” –rpcaddr
”127.0.0.1” –rpccorsdomain ”localhost”

Note that this will start the testnet ropsten. The application will listen to every eth-
blockchain running on the port 8545, so you can switch it with the mainnet or any other
Ethereum net.

Appendix B

Contents of the CD

The CD contains the the following:

• The source code of the application.

• The latex files to generate this report.

• The German summary.

• The .pdf and .ps file of this document.

43

